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The spinor structure on space-time manifold is investigated in the frame 
of Crumeyrolle's approach. Some of his theorems are simplified. The 
equivalence of this approach to the Milnor and Lichnerowicz one is 
shown using topological properties of the group space oleo. The equivalence 
of any two spinor structures on simply connected space-time is established. 

1. I N T R O D U C T I O N  

The spinor structure on space-time is usually defined (following Milnor 
and Lichnerowicz) as a prolongation (Trautman, 1973) of  the Lorentz 
structure ~:-~0 on space-time M to a spinor group SL(2, C). f f  there exists 
such prolongation (sL<2.c) then we can associate with each point m ~ M a 
spinor space Z(rn) given by the fiber over rn of  the associate bundle 
~:sL<2,c>[Z], where Z is a two-dimensional complex vector space equipped 
with skew bilinear form E~, = (_ 0 ~). However, we can reverse the question 
and look for conditions which allow us to attach in a continuous way a 
two-dimensional spinor space to each point of  space-time. This problem 
is investigated in this article in the most convenient framework of the 
Clifford-bundle approach developed by Crumeyrolle (1969, 1970, 1971, 1975). 

This paper is organized as follows. At first we recall some properties 
of  the group space of Lorentz group, and give basic properties of  the Clifford 
algebra as well as of  spinor groups (Clifford group, PinQ, SpinQ, Spin+ Q). 
Then we investigate different spinor spaces which we can build at some 
point of  space-time, and give the necessary and sufficient condition that 
two orthonormal tetrads define the same half-spinor spaces. Next, taking 
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into account topological properties of Lorentz group and covering maps, 
we come to the definition of the spinor structure given by Milnor (1963) 
and Lichnerowicz (1968). At the end we establish the equivalence between 
any two spinor structures on simply connected space-time. 

2. T H E  L O R E N T Z  GROUP 

In this section we collect a number of facts concerning the Lorentz 
group ~ = O(3,1). By this group we shall understand the set of  linear 
transformations which leaves invariant a nondegenerate quadratic form Q 
of signature (3,1) on R ~. The group ~ is not connected. Let ~0 be the con- 
nected component that contains identity. Then L~' is the union of the four 
connected sheets: 

= ~o u P~o  ~A TL~' o u PT.~o (2.1) 

where P is the parity operation, P ( x  ~ x) = (x ~ - x ) ;  T is the time reversal, 
T ( x  ~ x) = ( - x  ~ x); a n d P  z = T 2 = (PT)  2 = 1, P T  = PT. There exists the 
short exact sequence 

0 ~ 5e0 -+-W ~ Z2 |  (2.2) 

which splits on the right. I t  means that the Lorentz group ~ is a trivial 
extension of the four-element group Z2(T) | Z2(z) by ~0, that is, ~ is the 
semidirect product ~ = ~r • (Z2 | Z2). (Here z is the homomorphic 
image in ~ of the section - 1 --+ z of the map 9: ~ --~ + 1; ~(/x) = Det A 
for every ^ z ~ . )  

The group ~0 is the proper orthochronous Lorentz group of auto- 
morphisms of R 3'1 preserving the semiorientations: the spacelike one of 
R 3'~ and the timelike one of R ~ We shall denote -Wo = SO+(3,1). Apart  
f rom ~0 none of the components of (1) form a subgroup of ~ .  But there 
exist the following different invariant subgroups of ~ = O(3,1): the proper 
Lorentz group ~+ of orientation preserving automorphisms of R 3.~ denoted 
by S0(3,1)  and the orthochronous Lorentz group ~r of  time orientation 
preserving automorphisms of R 3'1. As above, the group 5r can be viewed as 
the group extension of Z2 by the subgroups ~+ or ~ t .  The group ~0 which 
we will study is equal to ~+ r~ ~ t .  It  acts transitively on the positive sheet 
of  the unit timelike pseudosphere of Minkowski space, which means that 
oWo acts transitively on the projective space of timelike lines TL in R 8'~. 
The isotropy group of timelike lines is 80(3). Because SO(3) is a closed 
subgroup of ~0, one can define on the group ~e 0 the structure of a principal 
SO(3) bundle with the base space ~o/SO(3). As we have a homeomorphism 
of .Z'o/SO(3 ) onto TL, it will be desirable to investigate properties of  the 
projective space of timelike lines. Naturally, we can imbed TL into 
the projective space R P  3 of  lines in R 4 in the following way. Let us take the 
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unit positive definite sphere S a in R 4. Now we define the projection of the 
two representative points of a timelike line onto the two points of  the 
intersection of this line with S 3. As is known (Husemoller, 1966), R P  3 

can be represented as a three-dimensional disk K a of unit radius with 
antipodal points identified in the boundary S 2 by means of a homomorphism 
induced by 4': K a ~ S+ 3 (S+ a denotes the subspace of S 3 defined by x~ /> 0), 
such that 

. ~rr r r  x_2 sin cos (2.3) r x2, xa) = sm ~-, sin 7 '  r 2-' 

It is obvious that T L  is imbedded as the open disk of radius �89 Hence we 
have T L  homeomorphic to R a. Therefore, since a principal bundle over a 
contractible base space is a trivial one, we have that ~~ 0 as a principal SO(3) 
bundle is homeomorphic to SO(3) x Ra: 

Leo ~ SO(3) x R 3 (2.4) 

The group SO(3) is the maximal compact subgroup of  s and has the 
topology of R P  3, as can be easily seen. For if we represent g ~ SO(3) as a 
point xg on the corresponding axis of rotation with [xg[ equal to the angle 
of  rotation, then we have a homeomorphism of SO(3) to a three-dimensional 
disk of radius 7r, with antipodal points identified in the boundary S 2, so we 
have SO(3) =~ R P  3. Thus 

~eo ~ R P  3 x R s (2.5) 

Apart from the maximal compact subgroup SO(3) of the group 2 '  0 we can 
select (among other subgroups) the Abel/an one-parameter subgroup ~r 
generated by Lo3 and the nilpotent two-dimensional subgroup ~ generated 
by A1 = Lol - Lal and A2 -- Lo2 + L2a. Here (Lol, Lo2, Lo3) are boosts 
(i.e., generators of  the proper Lorentz transformations), while (L2a, L31, Lz2) 
are operators of  the angular momentum, i.e., generators of SO(3). Now an 
element g of ~,eo can be written as 

g = e-~L12e-~OL31e-~L12e~'Lo~e-"(Lo~-L3~)e-'(Lo~-L~3 ) (2.6) 

The ranges of the parameters s, t, u are 

- o o  < s, t, u < oo (2.7) 

(which is to be expected by virtue of the above consideration which implies 
that the group space of ~~ is topologically the product of the group space of 
SO(3) and the three-dimensional Euclidean space). The notation of  (2.6) 
is reclining on the well-known Iwasawa decomposition of s which allows 
us to treat the Lorentz group as a product of  subgroups introduced earlier: 

= S O ( 3 ) d ~ .  
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3. SPINOR GROUPS 

I t  is well known that not all representations of  the orthogonal Lie 
group s = O(3,1) can be obtained from the vector representation by con- 
structing tensor products and decomposing them onto simple representation 
spaces. The simplest presentation of representations which cannot be ob- 
tained in this way (spinor representations) is based on the theory of Clifford 
algebras, so we begin with a short exposition of this merit. 

3.1. Clifford Algebras. I f  we have an n-dimensional vector space E 
over R, equipped with a nondegenerate quadratic form Q of signature 
(k, n - k) (and a bilinear form B(x, y) = �89 + y) - Q(x) - Q(y)] asso- 
ciated to Q) we can construct the Clifford algebra C(Q) corresponding to 
this form. The underlying vector space of the Clifford algebra C(Q) is 
isomorphic to that of  the exterior algebra A E of E, but the multiplication in 
C(Q) is specified by the form Q (Chevalley, 1954) in such a way, that for 
any x ~ E the operator of  left multiplication by x is (Lx + 3x). Here Lx 
is the operator of  left exterior multiplication by x in /x E and 3x is the anti- 
derivation of /x E such that ~xy = B(x, y). 1 for y ~ E. Thus the exterior 
algebra A E may be identified with the Clifford algebra of  the zero form 
on E. We shall now indicate a more abstract construction. Let us take 
the tensor algebra T of the vector space E. Let J be the ideal generated in 
T by elements a | x | a, where x ~ E, c~ ~ T(E). The exterior algebra A E 
is the factor algebra A E = T/J (Geroch, 1968). Now let us consider the 
ideal I of T generated by elements x | x - Q(x). 1 for all x ~ E. The Clifford 
algebra C(Q) of the quadratic form Q is the factor algebra T/I. I t  can be 
easily seen that I = J in the case of  the zero quadratic form Q (Bourbaki, 
1959). The natural mapping of T onto C(Q) = T/J induces an isomorphism 
of E into C(Q), and henceforth we shall identify the elements of E with 
their images in C(Q). Thus E will be considered as a subspace of C(Q). We 
have 

x 2 = Q(x). 1 for x ~ E (3.1) 
and 

xy + y x  = 2B(x, y). 1 for x, y ~ E (3.2) 

The dimension of the algebra C(Q) is equal to 2 ", and when (el . . . .  , e,) 
is a base of E then elements e~le~2. �9 �9 e~ of C(Q) with a strictly increasing 
sequence of integers 1 ~< il < i2. �9 �9 < ik ~< n form a base of  C(Q). Because 
(HusemoUer, 1966) the tensor algebra is Z2 graded onto tensors of even 
and odd degree, then so is C(Q) = C: C = C+ @ C_ with the subalgebra 
C+ being the image in C of the subalgebra ~ o T2k(E) of the tensor algebra 
T(E), and submodule C_ being the same for the submodule ~__o T2k+I(E) 
of T. 
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Let us introduce for a future use the notion of the main antiautomor- 
phism a of  the Clifford algebra C. It  is defined (Bourbaki, 1959) in a natural 
manner by the antiautomorphism aT of T, which is an extension of all the 
mappings c~: x~ |  �9 �9 | xk ~ x~ | xk_ 1 | �9 ' | x~. For the main anti- 
automorphism a we have 

o~(X) = x x ~ E 

4 c + )  = c+ (3.3) 
~(c_ )  = c _  

Let us limit ourselves to the case of  2r-dimensional vector spaces E. 
Then the center Z of  C is one dimensional, Z = R. 1, and the Clifford 
algebra C of Q is a central simple algebra. The central fact in the theory of 
Clifford algebras is that when C is simple then there exists exactly one, up 
to equivalence, finite-dimensional simple representation p of  this algebra. 
It  is called the spinor representation of  C, and the dimension of p equals 2 r. 

3.2. Clifford Groups. As we have said, the vector space E can be 
considered as a subspace of C ( Q ) .  Let us take an invertible element g ~ C ( Q )  

such that 

g x g - 1  ~ E for every x ~ E (3.4) 

The set of all such elements forms a group G called the Clifford group. 
The mapping ep: G - +  Aut E given by (3.4) is a linear representation of G 
which we shall call the vector representation of G to distinguish it from the 
spin representation. 

As for every g 6 G we have by (3.1) 

Q ( g x g - 1 )  �9 1 = ( g x g - 1 )  2 = Q(x) .  1 (3.5) 

so ~0 maps G into the orthogonal group O ( Q )  and in the case of  even-dimen- 
sional E, q~(G) = O ( Q )  with the kernel isomorphic to the group GL(1) of  
nonzero real numbers. Now for any nonsingular element x of  E (only then 
x is invertible, x -1 = ( Q ( x ) ) - l x )  we see from (3.1) and (3.2) that 

B(x, y) 
x y x  -~ = Q ( x ) - i x y x  = - y  + ~ x (3.6) 

Hence x belongs to G and ~(x) is given by the symmetry with respect to t h e  
hyperplane orthogonal to x. 

Because E is even dimensional, every element from G may be written 
as (Kobayashi and Nomizu, 1963) 

g =  hx l .  . . x~ 0 r  A ~ R (3.7) 
x~ nonsingular 
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The subset of elements of G with k even form a subgroup G + of the Clifford 
group G, called the special Clifford group, and mapping ~ol = ~ola+ maps 
G + onto the special orthogonal group SO(Q). Now we shall take into 
consideration the main antiautomorphism ~ of  the algebra C introduced 
earlier. For any element g of the Clifford group G, ~(g) belongs to G as 
well, and c~(g)g ~-O, ~(g)g E R. Thus we can define the "norm" homo- 
morphism N: G --~ R given by 

N(g) .  1 = ~(g)g (3.8) 

We shall denote by Go the group of elements g of G such that N(g)  = 1, 
and by Go + the group Go n G + = G+/GL(1), called the reduced Clifford 
group. Let Cpo be the restriction of ~0 to Go +. The subgroup of G isomorphic 
to the kernel of INI will be called PinQ and is in fact the quotient group 
G/GL+(1), where GL+(1) is the subgroup of nonzero positive numbers of 
GL(1). (See Fig. 1.) 

C--Clifford algebra 

l invertibility 
condition 

C*--multiplicative group of invertible elements of C 

t , , G  ~ 
A d  g : E --~ E ~ =~ / /  a, " r  

G~ ~3~'parity condition 
Clifford-- " " G +  N ( u )  = 1 G ~  

group ~ ,.ri,.L~ K!=''~ 
Pin Q Spin O - Spin+ O 

/ l.o/ 
o o) so(o)  so+(o) equal for O 

definite 

Kerq, = GL(1)  Kercp, = GL(1)  Ker~o = Ker~o = Z= 
Ker~ = Z= Ker~l  = Z2 

Fig. 1, Subgroups of the Clifford group. 
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The mappings c~, q51, C~o are restrictions of go, go1, goo, respectively. The 
group SpinQ will be the quotient group G+/GL+(1) equal to PinQ n G +. 
Thus every element g of PinQ has the form g = ),xl. �9 - x~ with N(g) = + 1 
and every element g' of SpinQ can be written as g' = A'xl. . .x~, with k 
even and N(g ' )=  _+ 1 (A, A' are nonzero real numbers). We then have 
obtained that the element qS~(g') is the product of an even number of sym- 
metries; hence c~l(g') belongs to SO(Q), and similarly ~(g) belongs to O(Q). 
Because the kernel of go as well as the kernel of ~01 is one dimensional, the 
Lie algebras of  the groups PinQ, SpinQ, Spin+ Q and O(Q), SO(Q), SO+(Q) 
are the same. Investigations of these algebras show (Chevalley, 1954; 
Crumeyrolle, 1971) that PinQ, SpinQ, and Spin+ Q are covering groups of 
O(Q), SO(Q), and SO+(Q), respectively, with the covering mappings qs, ~1, 
and q5 o. Thus we have isomorphisms 

PinQ 
O(Q) ~= Z2 

It can also be seen that 

and 

SpinQ 
SO(Q) ~= Z2 

PinQ .~ O(Q) ,.~ z2 
SpinQ = SO(Q) = 

SpinQ ~ SO(Q) ,.~ z2 
Spin+ Q = SO+(Q) = 

SO+(Q) ~ Spin+ Q 
zz  

if the form Q is indefinite. Thus the group SO+(Q) is of index 4 in O(Q). 
Coming back to the case of four-dimensional vector space R 3,1 and 

to the Lorentz group ~q' = O(3,1), which is of interest to us, we see that 
has four connected components (compare with Section 2) with the 

identity component equal to SO+(3 ,1)=  s Moreover, Spin+(3,1) is 
the identity component of Pin(3,1) and is mapped onto SO + (3,1). Because 
it can be shown (Chevalley, 1954) that C+(3,1) is isomorphic to Endc(C2), 
we obtain that Spin+(3, l) is isomorphic to SL(2,C). Let us recall that the 
group SO+(3,1) = ~o has the topology of SO(3) • R 3. Because Spin+(3,1) 
is the simply connected twofold cover of  SO+(3,1), it must be isomorphic 
to the simply connected twofold cover of SO(3) • R3; thus we have 
Spin+(3,1) _'j SU(2) x R 3. ~ S 3 x R 3. 

4. SPINORS 

As we have said, in the case of even-dimensional vector space E the 
Clifford algebra C(Q) = C is the central simple algebra, and hence has 
exactly one, up to equivalence, irreducible representation p. We call the 
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space of this representation the spinor space of our quadratic form Q of 
signature (u - k ,  k),  k <~ n/2. Thus the spinor is an element of 2"/2-dimen - 
sional vector space S (because in the regular representation o occurs exactly 
as many times as its dimension). There is a beautiful method of constructing 
the space S, which shows that in fact the spinor space is closely related to 
our original space E. In order to obtain this, let us take the complexifications 
Ee, Q', and C ( Q ' ) =  C'  of E, Q, and C ( Q ) ,  respectively. Then every 
orthogonal frame % = {e l , . . . ,  e2~} in E gives rise to the decomposition of  
Ee onto two totally singular subspaces N and P, known as the Witt de- 
composition, where N is spanned by vectors 

1 (el + e,), 

1 
x2 = ~ @2 + e , _ l ) , . . . ,  

1 
xk+ 1 = ~775 (ek+ 1 + ie,,_ ~) , . . . ,  

whereas P by vectors 

1 
Yl = ~ @ 1 -  e~), 

1 
Y2 = ~ @2 - en-1), . . ., 

1 
Yk+l = ~ (ek+l - ie,~_~) . . . . .  

1 
xk = ~ (ek + e,_~+ 1), 

1 (e,. + ie ,~-, .+l)  
Xr  ----- 

1 
y~ = ~ (ek - en- k+ 1), 

1 (er " 1) Yr = ~ - w,~_ ~ + 

(4.1) 

Thus Ec = N @ P,  and the elements (xl . . . . .  xr, Yl , . . - ,  yr) form a base 
of Ee which we shall denote by w0. Moreover, we have 

B'(x~, xj) = B'(y~, yj)  = O, 2B'(x~, yj) = 3~j (4.3) 

with B' being the bilinear form associated to Q'. Now, if we denote by f 
the product of all the base elements of P, 

f = y l " " y , .  (4.4) 

we find that C~fis a minimal left ideal of C' and 

C ' f  = C N f  (4.5) 

Here C N (as well as C P) is the subalgebra of C'  = C ( Q ' )  generated by the 
maximally isotropic subspace N (respectively, P)  of Ec.  If we take now into 
account that C' is simple, C)~is a minimal left ideal, and 

dim C~f = dim C~rf = dim A N = 2 r (4.6) 

(4.2) 



Spinor Structure of Space-Time 85 

then we obtain the spinor representation p' of  C '  on C n ~ A N, given by 

(p ' ( v )u ) f  = vuf, v ~ C '  u ~ A N (4.7) 

and equivalent to it spinor representation p on C~f = CNf, given, by 

p(v)(wf)  = v w f  v, w e C '  (4.8) 

[The representation of PinQ induced by p is irreducible, because C ( Q )  

can be obtained by means of linear combinations of  elements belonging 
to PinQ and because C ( Q ' )  is the complexification of the Clifford algebra 
C(Q).] So the spinor will be an element of  2r-dimensionaI vector space 
S = C f  on which acts the irreducible representation of the group PinQ. 
We see that the set of  elements x~l. �9 �9 xi~yl" �9 �9 Yr with 1 ~< il < i2. - �9 < ik ~< r 
forms a base 50o for the spinor space S. Now, when we take a product of 
9' ~ PinQ c C ( Q ' )  by an element of  50o, we obtain again an element of the 
chosen minimal left ideal, and y50o will be some other base for the spinor 
space S = C ' f :  

5 0  = r ~ o  = ( y x , 1 .  �9 �9 x ~ 3 1 . . ,  y , }  = ( x ; ~ . . .  x~o,yl.., y,} 
" i ' . .  "' (4.9) 1 ~<h < 2 " < t k ~  < r  

Here x;, = yx~,y -~ = ~(y)xi,, so we have that elements x[ . . . .  , x; are re- 
lated with another Witt decomposition of E c  given by orthogonal base E 
in E, �9 = %~(y). Because every spinor frame of the spinor space S can be 
obtained as 5~ = y50o with y e PinQ, then from (4.9) we can get 5" as 
uniquely defined by (�9 y), where �9 = �9 We see that the base �9 alone 
defines 5 ~ only up to the sign. Let us take two spinor bases 50 _= (�9 y) and 
5;, ~ (~, 9). Then 

do = ,2~o = ,~r~o = ~50 (4 .1o)  

r Y, 9 ~ PinQ r = 9y -1 

Now it can be easily seen that if  the spinor s c S has in the base 50 - (�9 y) 
components 

s = s q " % x ~ z . . ,  x l y y ~ " ' y r  (4.11) 

then in the base 6 ~ - (g 9) it will be given by 

s = g q ' " ' k ~ . . .  ~ y ~ . . . y ~  = p(~-X)sq '" '~g 'q . . .  ~ ; k g Y ~ ' " Y r  (4.12) 

We want to point out that the spinor space is specified as the minimal 
left ideal C ~  of C ( Q ' )  defined by some fixed totally isotropic subspace P 
of Ee. In our consideration the subspace P had been obtained from a fixed 
orthogonal % in E, and isotropic r v e c t o r f w a s  the product of  the elements 
of  the base of  P, given by �9 according to (4.2). It  is very useful to know that 
in order t h a t f a n d f f  define the same minimal left ideal (that is C~f = C ~ ' ) ,  
it is necessary and sufficient that f and f '  define the same maximal totally 
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isotropic subspace of Ec. Namely, it is obvious that when f '  = if, then 
Cf '  = Cf. Conversely, let Cf'  = Cf. Because f '  = vfy-1 (Chevalley, 1954, 
pp. 16 and 72) with y ~ PinQ', we have Cfy -1 --- Cf. But Cfy -1 and Cf  
are minimal left ideals, and it follows that the element fy -1  must be given 
by s f fo r  some s ~ C(Q').  On the other hand, s f i s  an element of the minimal 
left ideal C ~  as well as f y -  i is an element of the minimal right ideal. But 
it is well known (Chevalley, 1954) that the intersection of any minimal right 
ideal of the Clifford algebra with any minimal left ideal is a one-dimensional 
vector space. In our case this intersection is 

s f  = f y - 1  = Ixf with/x ~ Z (4.13) 

Now, when we apply the main antiautomorphism ~ to the expression (4.13), 
we obtain 

a0ey- 1) = a(y- ~)y- tya( f )  = / , a ( f )  (4.14) 

and because a(y-1)y-~ = N(y-1) and a ( f )  = (-l)TC'-l>:2f, we have 

y f  = N(y)/~ (4.15) 

Thus we arrive at the conclusion that 

f ,  = yfy-1 = N(y)t~2f = I f  (4.16) 

This result tells us that two orthogonal bases e and ~' in E define the same 
spinor spaces if and only if the Witt bases o~ and co' related with E and d, 
respectively, by (4.1) and (4.2) define the identical maximally isotropic 
subspaces P '  = P, that is, f '  = ~f with A r 0. As we know, the orthogonal 
bases e of E are permuted transitively among themselves by the operation 
O(Q). The covering mapping q5 allows us to put f '  - yfy-1 with y E PinQ 
and O(Q) ~ qZ(y): e -+ g. (Naturally we have ambiguity of the sign of y 
which cannot be avoided.) It appears, however, that even though frames 
c and e' do define the same spinor space, i.e., y fy - t  = ),f, then the related 
spinor frames 5:o and 5:;  do not have to be PinQ equivalent. We show now 
that 5:o and 5~ o are connected by an element of PinQ only when i~ = +_ 1. 
For this we shall consider the spinor bases 5:o and 0% given by ~o and oJ', 
respectively: 

5'~ = {x,~.. .  x~J}  and ..9% = {x'~... x'~j} (4.17) 

Now we have from (4.13) and (4.16) 

5~'~) = {yx,~... x,~y-lyfy -1} = {yx,~... x, etLf} = tLySfo (4.18) 

So, if/~ r + 1 we obtain that the spinor frames 5:0 and 5:;  defined by E 
and E' [which are O(Q)-equivalent] are G equivalent but not PinQ equivalent 
[PinQ ~ G/GL+(I)]. Henceforth if we want to get the same spinor space 
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by maximally r-isotropic vectors f and f '  (given by E and 4) provided with 
PinQ-equivalent spinor bases, t h e n f '  must be 

f '  = 7./'7 -1 = + f (4.19) 

The elements 7 of  the group PinQ, which satisfy the condition of (4.19), 
form the subgroup of PinQ which we shall denote by ~~ Now when we 
require that the orthogonal bases e and 4 of E define the same spinor space 
and equivalent spinor bases, then e and 4 have to be obtained one from 
another by means of the operation g e O(Q) such that qs-l(g) c j(~o. If  we 
denote by H the group H = c}(~(r c O(Q), we have that g must be an 
element of H. When we start with some orthogonal frame e' of  E which is 
linked to % by some element g ~ O(Q), g (s H, then e' will define another 
spinor space which will be the space of an equivalent irreducible repre- 
sentation of the group PinQ. If  we restrict ourselves to the even elements 
of  the group PinQ, that is, to the group SpinQ, then the spinor space 
S = C~r /x N splits into two subspaces Se and So invariant under the 
SpinQ group. It is easy to see this when we take into account that for every 
x e Ec = N @ P, x = (y, z) with y ~ N, z e P, the spinor representation 
p'(x) = p'(y, z) is the operation of left multiplication by y in C ~r _= /x N 
and the homogeneous antiderivation of  degree - 1  of  C N. Thus p'(x)u = 
p'(y, z)u = y A u + 2B(z, u) for u ~ N. It follows immediately that every 
operation p'(v) with v e C+(Q) c C'+(Q) transforms every one of the half- 
spinor spaces C + N =  C N n  C+ = C+Nfand C _ U =  CNC~ C_ - C_Nfinto 
itself. But S = C~ c = C N, and p is equivalent to p', then we deduce that the 
spinor representation p of SpinQ is the sum of two inequivalent irreducible 
representations on the spaces St and So. The elements of  these 2 r- ~-dimen- 
sional spaces are called half-spinors. We shall return to the half-spinors 
later on, but now we want to consider the tensor product of  the space S 
of spinors with itself. 

It can be proved that there exists an isomorphism ~ of the space S | S 
onto C(Q' )  given by 

~0(u | v) = Of~(~) (4.20) 

where, u, v ~ S = C ~  and 17, ~ e C N _-- S (c~ is the main antiautomorphism 
introduced earlier). Of  course the tensor product S | S is the space of the 
tensor representation of  the group PinQ, which naturally is a reducible 
representation. Now let us note that 

q~(p(s)u | p(s)v) = saf~(~)~(s) = N(s)scp(u | v)s - I  (4.21) 

Thus if we restrict ourselves to the case of the group Go of  elements s with 
norm equal to 1, and if we recall that the vector space E is identical with 
some subspace of  the Clifford algebra C(Q)  c C(Q' )  =- s | S, then we 
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can see from (4.21) that to every transformation p(s) of S | S there corre- 
sponds a transformation of E belonging to O(Q). Nevertheless this situation 
is not quite satisfactory, because we prefer to have as the basic quantities 
the half-spinors which play the fundamental role in the physical theories. 
I t  is clear from the previous considerations that to get this we have to take 
only the even elements of Go. Thus we should take the group Go + = Spin+ Q 
as the symmetry group of the spinor space. I t  is evident from Figure 1 
that the symmetry group of our original vector space E is the group SO+(Q).  

In the case we are dealing with, the space E is a four-dimensional 
vector space over R equipped with a quadratic form Q(3,1). Let us take the 
orthogonal base co = {e~, e2, ea, e4} with 

Q ( e 3 = f + l  i =  1 ,2 ,3  (4.22) 
\ 1 - i = 4  

The Witt base ~Oo of the complexification Ee of the space E, corresponding 
to %, is given by 

1 1 
xl = ~ (el + e4) Yl = ~7~ (el - e~) 

1 1 
x2 = ~ (e2 + iea) Y2 = ~ (e2 - iea) (4.23) 

In this manner we obtain the spinor space S as C ( Q ' ) f  = C ( Q ' ) y l y z ,  and 
the spinor frame 

6ao = {1 "YlY2, x l .  y ly2,  x2" y~y2, x~x2. y~y2} (4.24) 

Now if we require the existence of half-spinors as the basic quantities, we 
have to restrict ourselves to the group Spin+(3,1)= Pin(3,1). Thus we 
have the SO+(3,1) = 6~' o as a symmetry group of our original space R a,1. 
The dimension of the spinor space S is equal to 2 r = 4, and the dimension 
of the half-spinor spaces So and Se equals 2. Besides, So is based on vectors 

So = {x~. y~y2, xe" yly2} (4.25) 
as well as 

Se = (1 "YlY2, xlx2"y~y2} (4.26) 

Now for any orthogonal base e of R a,1 the spinor spaces defined by eo 
and c, respectively, are the same, and as the corresponding spinor frames are 
Pin(3,1) equivalent, when e is obtained from % by means of an operation 
g, such that g = ~(y) for y satisfying the condition 

~'YlY2 = + YlY2 (4.27) 

that is, for y e ~ = PinQ and q e H = ~ ( ~ ) .  I f  we shall consider the 
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most interesting case when the spaces of half-spinors are fundamental ones, 
then we come to the conclusion that the bases e and % must be transformed 
one into another by means of an element of the connected component of 
identity Ho of the group H (Fig. 1). In this case the spinor frames are 
Spin+ Q ~= SL(2, C)-equivalent. It can be shown (Crumeyrolle, 1975) that 
the group Ho c SO+(3,1) is homeomorphic to R 2. 

5. LORENTZ STRUCTURES ON SPACE-TIME 

Space-time is usually defined as a smooth, connected, paracompact, 
Hausdorf  four-dimensional manifold M, which carries a smooth global 
Lorentz tensor field g. These properties of space-time manifold are assumed 
for a mathematical convenience. It is known that any paracompact, Hausdorf 
manifold admits a global metric tensor field; from the other side every 
connected Hausdorf four-dimensional manifold with the Lorentz metric is 
paracompact (Geroch, 1968). A manifold M admits a Lorentz tensor field 
if and only if it admits a direction field, and these directions can be chosen 
to be timelike. Although there is as yet no observational evidence that 
space-time is orientable, we shall assume the existence of a time orientation 
of space-time as physically motivated. Then M admits oriented direction 
field. It is known that there is one-to-one correspondence between the 
pseudo-Riemannian metrics of signature (+  + + - )  on M and ~ structures 
~:~ on M (Lichnerowicz, 1968). [We recall that a Lorentz structure on M 
is a reduction of the structural group GL(4) of the principal frame bundle 
of M to the Lorentz group ~ = O(3,1).] Such a reduction (Whiston, 1973) 
is possible if and only if the associated bundle ~aL[GL(4)/O(3,1)] admits a 
cross section. Let us suppose that M admits a Lorentz structure. It allows 
us to define the associated bundle (.~[TL] of timelike directions with the 
projective space TL as the fiber. Because TL is contractible (what has been 
pointed in Section 2), it follows (Husemoller, 1966) that there is a global 
section of the ~.~[TL] bundle which is just the timelike direction field on M. 
Conversely, since TL is homeomorphic to a subspace of GL(4)/0(1,3) 
(Whiston, 1975), the timelike direction field defines the section of the bundle 
(aL[GL(4)/O(3,1)] that is a reduction of  the principal frame bundle over 
M to the Lorentz group. Because every noncompact four-manifold admits 
direction field, it admits a Lorentz structure too. Moreover, this field can be 
oriented, and therefore M is time orientable. The time orientability of the 
space-time M is equivalent to the possibility of  reduction of Lorentz struc- 
ture (.~ to the orthochronous Lorentz group ~ t ,  and a space-time is an 
orientable manifold if and only if a Lorentz structure reduces to the group 
SO(3,1) = .6,~ If  M is an orientable and time-ofientable space-time man- 
ifold, then the principal frame bundle ~az can be reduced to the principal 
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5r bundle ~:s%. There is a connection between the overall orientability of 
M and the properties of time orientability and space orientability following 
from the structure of the group ~o as a group extension of the appropriate 
groups (Section 2). Namely, any two of the three possible orientability 
properties imply the other. Then if M is time orientable and space orientable, 
then the structure group s of the ~:ao bundle have to be reduced to s176 0 = 5r ~. 

6. SPINOR STRUCTURES ON SPACE-TIME 

Spinors are used in many physical theories based on fiat models of space- 
time. They are necessary to express very important features of  the physical 
world. In the case of curved space-time we have no physical reasons to give 
up the possibility of introducing the spinors. On the contrary, an argument 
of Aharonov and Suskind makes the assumption of the existence of a spinor 
structure plausible. What do we have to do to introduce spinors in general 
relativity ? First of all we must be able to affix a spin space to every point 
of space-time M in a continuous way. To do this let us consider the Clifford 
algebra of the space-time four-manifold M. Because a Lorentz metric g 
on M defines on the tangent bundle over M a nondegenerate quadratic form 
of signature (3,1): Q(X)= g(X,X)  for X ~ ( M ) ,  we shall obtain the 
Clifford algebra related to Q [which we shall denote CM(3,1)] as the factor 
algebra of vector fields | Y'(M) by the ideal generated by the elements 
X Q X - Q(X). The Clifford algebra CM(3,1) defines in a natural way the 
Clifford algebra Cx(3,1) at every point of M as the Clifford algebra of tan- 
gent space TxM equipped with the quadratic form Qx. Now, the spinor 
space Sx at x ~ M will be the minimal left ideal of the algebra C;(3,1) 
[which is the complexification of the Clifford algebra C~(3,1)]. As we have 
seen, such an ideal can be defined by some orthonormal base ex ~ of T~M 
in the following way: The base Ex ~ defines the Witt base (xl, x2, Y~,Y2}x 
of the complexification of T~M and Sx will be equal to C~(3,1)fx, with 
f~ = YlY2. In this manner every orthogonal tetrad at x ~ M defines some 
spinor space at the same point x. Now by the local triviality of the Lorentz 
structure ~:~, there is an open covering {U,},~a of  the manifold M with the 
local fields of  orthogonal tetrads h,, where h~ is the local cross section over 
U~ given by the local trivialization 9, :  U~ x s _+ ~:ao[v. This enables us 
to construct spinor spaces over U, in a continuous way. But the spinor 
structure will be uniquely defined if the spinor spaces given by ha(x) and 
he(x ) for x ~ U, n U s will be the same. We require for physical reasons the 
existence of  half-spinor spaces as fundamental ones. It follows from the 
considerations of Section 4 that the frame h~(x) can be obtained from he(x) 
by means of an operation belonging to Ho. It means that transition functions 
of the principal bundle ~:~o must take their values from H0. However, it is 
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known (Kobayashi, 1963) that this is the necessary and sufficient condition 
for reducibility of  the structure group 2" to Ho. Because Ho is a subgroup 
of  2'0, we obtain that first of  all the 2" structure ~ must be reducible to 
~:soo. To summarize: we can construct the half-spinor spaces over M in a 
continuous way if and only if the space-time manifold M is time orientable 
and space orientable, and if there exists an open covering {U,} of M with the 
set of  transition functions which take their values in Ho = RL 

On the other hand, we know that the reduction of the principal bundle 
of oriented tetrads (~0 to fHo is uniquely defined by a cross section ~ of  the 
associated bundle ~o[2"o/Ho] (we recall that 2"0= S03~Jg') .  From the 
earlier consideration it is clear that the cross section cr allows us to define the 
global field of  orthogonal tetrads on M (because the group space of s~' and 
that of  ~ 7 R 2 are contractible), Now let us take the open covering 
{U,~}~A of the space-time, with U~ simply connected and with local fields 
of  orthogonal tetrads ha with g,e ~ R2 ~- 11o. We shall use two very well 
known facts. The first is that for every fibering ~r: X---~ B, every mapping 
of connected and simply connected space U into B can be lifted to the 
space X: 

X 

U"" >B 
1" 

And the second states that when X is a covering space over B, g as welt 
as g '  are two liftings of  the given mapping f ,  and g(x) is equal to g'(x) at 
least at one point x e U; then g(x) = g'(x) for every x ~ U. In the considered 
case SL(2, C) is a covering space over La o relative to a map ~-: SL(2, C) ~ Lao; 
hence there exists a lifting ~,B of  the map g~,e: U, n U e ~ 2"0. From 
g,~ ~ Ho ~ R 2 we have uniquely defined mappings '~e: U,~ n U s ~ SL(2, C); 
their images belong to Ho too. Then the following relations hold: 

A~B(x) = h~,(x)A,e(x ) for x s U~ n U B c~ U, 

It  means that hub are transition functions of  the principal SL(2, C) bundle 
fsu2.c). It  can be easily checked that there exists the homomorphism S: 
fSL(2.C>---> ~-~o such that the following diagram commutes: 

Bsu2.c~ x SL(2, C) ~ B.~ o x 2"0 

1 1 
BsL<2,c~ s ~ B~o 

/ "  
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(where Ba denotes the bundle space of the appropriate G bundle ~:a). Thus 
we come to the definition of the spinor structure given by Milnor and 
Lichnerowicz. 

Besides, if space-time is simply connected, then the spinor structure is 
uniquely defined up to equivalence. Indeed, let h(x) and h'(x) be two different 
global fields of  orthogonal tetrads over M, and ~o and ~o' two trivializations 
of ~:-~o given by h and h', respectively [cp(x, e) = h(x) and ~o'(x, e) = h'(x)]. 
Then we have 

X X s 

M x SL(2, C) l , , ,> M x N'  o ~ > B < r M x ..~'o <l""  M x SL(2, C)  

1 I 1 L l 
~ M - c  , M ~  > M - ~  > M  M <  

where 
x(x,  s) = ~(x, , ( s ) )  = h (x ) , ( s )  

x ' (x ,  s)  = ~'(x,  , ( s ) )  = h ' ( x ) , ( s )  

For simply connected space-time M the map g: M--~ 2'0 defined by h'(x) = 
h(x)g(x)  can be lifted to A: M--~  SL(2, C),  and we obtain 

x'(x,  s) = x(x, •(x)s) 

It  means that these two spinor structures can be identified. 
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